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Capsule 23 

The global error characteristics of Tropical Rainfall Measuring Mission (TRMM)-based “best-24 

effort” real-time precipitation estimates and their regional and seasonal variations are benchmarked as 25 

a baseline for its successor Global Precipitation Measurement (GPM) mission.  26 
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Abstract 27 

Accurate estimation of high-resolution precipitation on the global scale is extremely challenging. 28 

The operational Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis 29 

(TMPA) has created over 16 years of high-resolution quantitative precipitation estimation (QPE), and 30 

has built the foundation for improved measurements in the upcoming Global Precipitation 31 

Measurement (GPM) mission. TMPA is intended to produce the “best-effort” estimates of quasi-32 

global precipitation from almost all available satellite-borne precipitation-related sensors by 33 

consistently calibrating them with the high-quality measurements from the core instrument platform 34 

aboard TRMM. Recently, the TMPA system has been upgraded to Version-7 to take advantage of 35 

newer and better sources of satellite inputs than Version-6, and has attracted a large user base. A key 36 

product from TMPA is the near-real-time product (TMPA-RT), as its timeliness is particularly 37 

appealing for time-sensitive applications such as flood and landslide monitoring. TMPA-RT’s error 38 

characteristics on a global scale have yet to be extensively quantified and understood. In this study, 39 

efforts are focused on a systematic evaluation of four sets of mainstream TMPA-RT estimates on the 40 

global scale. Our analysis indicates that the latest Version-7 TMPA-RT with the monthly 41 

climatological calibration had the lowest daily systematic biases of approximately 9% over land and   42 

-11% over ocean (relative to the gauge-adjusted research product). However, there still exists some 43 

unresolved issues in mountainous areas (especially Tibetan Plateau), high-latitude belts, and for 44 

estimating extreme rainfall rates with high variability at small scales. These global error 45 

characteristics and their regional and seasonal variations revealed in this paper are expected to serve 46 

as the benchmark for the upcoming GPM mission. 47 
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Global view of real-time TRMM Multi-satellite Precipitation Analysis: implication 48 

to its successor Global Precipitation Measurement mission 49 

 50 

1  Introduction 51 

Precipitation is a key component of the global water cycle (Allen and Ingram, 2002; Wu et al., 2013). 52 

The measurement of precipitation at global scale is therefore crucial for a comprehensive 53 

understanding of the climate, weather, hydrology, and ecological systems (Wentz et al., 2007; Bunde 54 

et al., 2013; Liu et al., 2013). However, precisely measuring precipitation in many regions of the Earth 55 

is still a challenging task owing to the high spatial variability of precipitation and the sparseness of the 56 

surface-based observing networks (Ebert et al., 2007; Min et al., 2011). Especially over oceans, 57 

deserts, and mountainous areas, it is mostly infeasible to fully monitor precipitation with conventional 58 

rain gauge networks or weather radars. Satellite-based remote sensing can offer an alternative source 59 

of precipitation information for vast areas of the Earth’s surface and has presently become the only 60 

practical way to measure precipitation on a global basis (Tian and Peters-Lidard, 2010; Kidd et al., 61 

2012).  62 

An important new program for global precipitation estimation is the Global Precipitation 63 

Measurement (GPM) mission lead by the National Aeronautics and Space Administration (NASA) 64 

and the Japan Aerospace Exploration Agency (JAXA) (Kidd and Huffman, 2011). The GPM is 65 

composed of one Core Observatory satellite and approximately eight constellation satellites. The 66 

GPM Core Observatory was successfully launched by the H-IIA launch vehicle No. 23 at 1:07 p.m. 67 

EST on February 28, 2014 (www.jaxa.jp/countdown/f23). This core satellite carries a Dual-frequency 68 

Precipitation Radar (DPR; the Ku-band at 13.6 GHz and Ka-band at 35.5 GHz) and a multi-channel 69 

http://www.jaxa.jp/countdown/f23


 
 5 

GPM Microwave Imager (GMI; frequency range between 10 and 183 GHz), which will be used 70 

together to develop a new calibration standard for the other microwave radiometers on the 71 

constellation satellites (Tapiador et al., 2012; Hou et al., 2014). In addition to these passive 72 

microwave sensors aboard low-Earth orbiting (LEO) satellite, GPM will utilize infrared measurements 73 

from geostationary satellites, yielding precipitation estimates around the globe at 0.1-deg, 30-min 74 

resolution. In general, the Core Observatory will help to observe worldwide precipitation (rain and 75 

snowfall) rates several times per day. Therefore, it is anticipated that GPM will improve climate, 76 

weather, and hydrological predictions through more accurate and more frequent precipitation 77 

measurements from space, aiming for a 3-hour interval for the LEO microwave observations. This 78 

should help meteorologists to better understand how Earth’s hydrological cycle works.  79 

As a prelude to GPM, the current operational Tropical Rainfall Measuring Mission (TRMM) 80 

Multi-satellite Precipitation Analysis (TMPA) system produces estimates of quasi-global rainfall 81 

(50°N–50°S) at relatively fine resolution (0.25°×0.25°, 3 hr) (Huffman et al., 2007; Yong et al., 2013). 82 

The TMPA is computed twice—first in near-real-time (TMPA-RT; 6-9 hours after observation time), 83 

and then again in post-real-time (TMPA-P; two months latency) for research purposes. These two 84 

types of TMPA standard products have been widely utilized in a variety of research and operational 85 

applications (Vallarini and Krajewski, 2007; Habib et al., 2009; Kidd et al., 2009; Tobin and Bennett, 86 

2010; Behrangi et al., 2011; Khan et al., 2011; Romilly and Gebremichael, 2011; Habib et al., 2012; 87 

Wu et al., 2012; among many others). Prior studies indicate that the TMPA-RT estimates are less 88 

accurate than TMPA-P due to the lack of month-to-month gauge adjustments and high-quality TCI 89 

(TRMM Combined Instrument) calibration in the data processing algorithm (Su et al., 2008; Stisen 90 

and Sandholt, 2010; Yong et al., 2010; Bitew and Gebremichael, 2011). However, it is the near-real-91 

time availability that makes TMPA-RT attractive for real-time hydrological forecasting and natural 92 

http://pmm.nasa.gov/GPM/flight-project/GMI
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hazard warning at local, regional, and even global scale (e.g., Hossain and Lettenmaier, 2006; Hong et 93 

al., 2007; Gourley et al., 2013).  94 

During the past decade, the TMPA real-time system has undergone three major upgrades 95 

(corresponding to Versions -5, -6, and -7) because of the new sensors and upgraded algorithms (refer 96 

to Yong et al., 2010 and Yong et al., 2012 for a detailed description). As one of the most important 97 

algorithmic upgrades, a climatological calibration algorithm (CCA) was applied in TMPA’s real-time 98 

estimates from 1 October 2008 in Version-6, utilizing climatological gauge information to effectively 99 

reduce systematic biases, while maintaining the near-real-time availability. For this monthly 100 

calibration procedure, the developers first determined a local histogram matching of TMI (TRMM 101 

Microwave Imager) to TCI, computed from 14 years of coincident data (in Version-7) to establish the 102 

climatology for each calendar month. Then, a monthly climatological calibration of TCI to 3B43 103 

(another TRMM product computed at monthly time intervals) is calculated as a simple ratio on a 1° × 104 

1° grid. The calibration factor is aggregated to an overlapping 3° × 3° boxcar template using 14 years 105 

of data. Finally, the TMI-TCI and TCI-3B43 calibrations are applied sequentially to the preliminary 106 

real-time products to create the calibrated TMPA-RT estimates.  107 

The CCA is the primary upgrade from Version-5 to Version-6. Furthermore, this new 108 

calibration has been used in the current Version-7, and a similar approach will carry over to the real-109 

time runs of the Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm. Version-7 also 110 

introduced some newer passive microwave (PMW) and infrared (IR) sensors relative to Version-6, 111 

mainly including the Special Sensor Microwave Imager/Sounder (SSMIS) F16-17, Microwave 112 

Humidity Sounder (MHS) (N18 and N19), Meteorological Operational satellite programme (MetOp), 113 

and the 0.07° Gridsat-B1 infrared data (http://trmm.gsfc.nasa.gov/).  114 

As the GPM era is now upon us, studies will focus on the impact of the contemporary 115 

http://trmm.gsfc.nasa.gov/
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measurements as well as continued algorithm development. Therefore, it seems timely for this paper 116 

to provide some insights into the following questions frequently posed by the satellite QPE-hydrology 117 

community: 1) How do the latest Version-7 TMPA-RT estimates perform at global scale (specifically 118 

compared to Version-6)? and 2) Are the current TMPA precipitation algorithm concepts being used in 119 

the new IMERG system ready for GPM?  120 

Due to the lack of accurate and independent ground observations, we cannot directly quantify 121 

the systematic errors of TMPA-RT estimates by surface validation data across the entire globe. To 122 

provide a globally consistent evaluation, we first use the Version-7 TMPA-P product as the reference 123 

for our comparisons in this study for the following reasons. First, it ingests the new Global 124 

Precipitation Climatology Center (GPCC) (Rudolf et al., 1994) “full” gauge analysis, and hence 125 

essentially reproduces the precipitation characteristics of the gridded GPCC dataset at monthly scale 126 

in many land areas. Through these gauge adjustments, which also introduce rainfall patterns forced by 127 

orography, the research product has been shown to successfully remove systematic biases of satellite 128 

retrievals (Chen et al., 2013a; Chen et al., 2013b). Moreover, the TMPA developers attempted to 129 

make the real-time data sets resemble TMPA-P as much as possible through the CCA calibration to 130 

TCI. Therefore, the latest Version-7 TMPA-P research product gives us a suitable reference to 131 

compare different TMPA real-time estimates on a global basis. The drawback is its lack of 132 

independence from the real-time products being evaluated; the research product incorporated the same 133 

remote-sensing measurements in the final products. In this paper, the “previous” uncalibrated and the 134 

“new” climatologically calibrated TMPA-RT estimates for both Version-6 (RTV6_UC and RTV6_C 135 

hereafter) and Version-7 (RTV7_UC and RTV7_C hereafter) are statistically investigated against 136 

Version-7 TMPA-P (V7 hereafter) at the global scale. We also employed a gauge-based analysis of 137 

daily precipitation produced by NOAA’s Climate Prediction Center (CPC; 138 
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ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/) (Chen et al., 2008; Xie et al., 2010) to further 139 

evaluate the TMPA-RT precipitation products over four densely gauged regions. We selected an 140 

overlapping timespan of these six available data sets, three complete years from July 2008 to June 141 

2011. 142 

2  Results and Discussions 143 

2.1  Global view of systematic biases in TMPA-RT estimates  144 

A global map of mean daily precipitation difference between the four TMPA real-time estimates 145 

(RTV6_UC, RTV6_C, RTV7_UC, and RTV7_C) and the V7 post-real-time research product gives a 146 

clear indication of where the data sets are performing better or worse. In general, RTV6_C and 147 

RTV7_C have lower relative biases than their corresponding uncalibrated estimates (Fig. 1). Most 148 

notably along the Western Pacific Ocean Convergence Zone (near 10°S) extending over the 149 

Philippines, Indonesia, and Malaysian Islands, southeastern China, and into the Indian Ocean, the 150 

CCA calibration significantly elevated the uncalibrated TMPA-RT estimates so as to effectively 151 

reduce their substantial negative biases. Similar patterns were also found in the narrow Inter-Tropical 152 

Convergence Zone across the Atlantic Ocean extending toward Central America. Likewise, such 153 

upward adjustments also alleviate the systematic underestimation along most coastlines (e.g., the 154 

western coast of India and the eastern coast of American Continent) and over inland water bodies (e.g., 155 

the Great Lakes).  156 

Insert Figure 1 here 157 

From Fig. 2, it can be seen that these extreme negative biases primarily occurred in the boreal 158 

warm season (June, July, and August - JJA). The patterns of underestimation by the uncalibrated 159 

products seem to correspond to climatological maxima of tropical rain features and the migration of 160 
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the Asian Summer Monsoon. On the other hand, there is an apparent overestimation with the 161 

uncalibrated RTV6_UC and RTV7_UC datasets in central Africa (an area just to the west of Lake 162 

Victoria, see Figs.1a and 1c), especially during the rainy seasons (refer to plots of ‘MAM’ and ‘SON’ 163 

in Fig. 2). Over this region, significant reductions resulted following the CCA calibration, thereby 164 

reducing the most significant positive biases for the uncalibrated TMPA-RT products.  165 

Insert Figure 2 here 166 

Over land, almost all regions exhibit strong seasonality of bias. For example, Europe has much 167 

larger negative biases in winter due to erroneous retrievals of snow events during the cold season 168 

(Yong et al., 2013). Over the eastern continental United States (CONUS), the negative biases with the 169 

RTV6_UC and RTV7_UC estimates were also likely the result of snow events. A positive bias 170 

appears in the Great Plains of the US presumably due to overestimation by the PMW-based land 171 

algorithms for strong convective events during the warm season (Tian et al., 2009; Gourley et al., 172 

2010). Inter-comparing the TMPA-RT estimates before and after climatological calibration, one can 173 

see that the CCA substantially improved these seasonal errors and biases for both versions (Fig. 2).  174 

Many of the global error features in TMPA-RT estimates can be related to the overpass 175 

frequency and retrieval characteristics of the PMW and IR sensors incorporated. Two types of PMW 176 

sensors are currently available for TMPA, namely, conical-scanning imagers including TMI, AMSR, 177 

SSMI, and SSMIS, and cross-track-scanning sounders including AMSU and MHS. Generally, the 178 

imagers have better performance than the sounders (Lin and Hou, 2008; Tang et al., 2014), and TMPA 179 

Version-7 system is using more imager overpasses than Version-6 on the global scale (see Figs. 3e 180 

and 3f). [Note that the TMPA selects imager data over sounders when both are available in a gridbox 181 

at a particular 3-hour time.] This is an improvement that takes advantage of more and better data 182 

sources for producing merged Version-7 TMPA estimates. In addition, the proportion of 183 
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Geostationary Infrared-based retrievals (geo-IR) is reduced when compared to Version-6 (Figs. 3g and 184 

3h). However the Tibetan Plateau is an exception. Over this region, the usage of geo-IR data with poor 185 

correlation to precipitation is more frequent than the previous version (its scanning proportion 186 

accounting for over 70% of total scans), likely due to more stringent quality control of the PMW 187 

overpasses as they are unreliable over the snow cover and complex terrain in the Tibetan Plateau. 188 

Therefore, the Geo-IR data is less certain given it is calibrated by the deficient PMW over this region. 189 

On the other hand, geo-IR data themselves are not necessary more reliable, because of many 190 

orographic rain events lacking the strong convective signatures for geo-IR detection. Therefore the 191 

choice of geo-IR or PMW data sources over this area is equally challenging, and the fact that Version-192 

7 utilizes more geo-IR data than Version-6 is just a reflection of the large uncertainties in our 193 

knowledge for this area (Tian and Peters-Lidard, 2010). 194 

It is worth noting that the issues were not readily resolvable by calibrating to rain gauges. 195 

Relative to the uncalibrated RTV7_UC, the calibrated RTV7_C has a dramatic overestimation in the 196 

Tibetan Plateau (Fig. 1d). Such a significant discrepancy before and after climatological calibration 197 

should be attributed to the CCA algorithm. Because of high elevation, complex terrain, severe weather, 198 

and general inaccessibility, direct meteorological observations employed in the improved GPCC rain 199 

gauge analyses do not exist over large portions of the Tibetan Plateau, especially in the mid-western 200 

part of the plateau. Hence, the GPCC values used in the CCA calibration over the Tibetan Plateau 201 

were mainly determined by the gridded interpolation results of its surrounding areas (e.g., India, 202 

southeast Asia, and southeastern China). Over these surrounding regions extending to the western 203 

Pacific Ocean and Indian Ocean, the upward adjustments of the CCA calibration evidently elevated 204 

the RTV7_UC estimates at the large scale, but meanwhile unfavorably increased the original positive 205 

biases over the Tibetan Plateau, particularly during the warm season (Figs. 2g and 2h). The tendency 206 
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to raise precipitation amounts seems to be more significant in Version-7 than that in Version-6 (Figs. 207 

2e-2h), which could explain the larger positive biases in RTV7_C relative to RTV6_C (Figs. 1b and 208 

1d). This is an indication of the large uncertainties in the gauge data as well. A similar phenomenon 209 

can also be found in the Tianshan Mountains north of the Himalayas and the Cordillera Mountains in 210 

the western coastal mountains of South America. From this global analysis, we have shown that the 211 

current Version-7 TMPA-RT data still have much uncertainty in high mountainous areas, especially at 212 

the Earth’s “third pole”.  213 

Insert Figure 3 here 214 

2.2  Improvement for both land and ocean  215 

The density-colored scatterplots displayed in Fig. 4 give additional analyses of how the CCA 216 

calibration works for two different TMPA versions over the whole domain, broken into land and 217 

ocean areas. In general, we can see that the scatterplots of calibrated TMPA-RT (bottom diagrams) 218 

have higher Pearson linear correlation coefficient (CC) and lower root mean squared error (RMSE) 219 

and the points are clustered more closely to the 1:1 line than for the uncalibrated estimates (top). The 220 

uncalibrated TMPA-RT products substantially underestimate precipitation over both land and ocean, 221 

while the CCA calibration effectively reduced such systematic negative biases. Over land, all the 222 

statistical indices indicate that the RTV7_C outperformed RTV6_C with higher correlation and lower 223 

error and bias. Over oceanic regions, the mean error (ME) and relative bias (BIAS) of RTV7_C are 224 

slightly larger than those of RTV6_C. But it cannot be considered that the latter is superior to the 225 

former, since the overall bias is the average results offset by opposing signs in different regions. The 226 

CC and RMSE are informative here, and indeed show better performance by RTV7_C. Overall, our 227 

evaluation indicates that the RTV7_C provides the best daily precipitation estimates and its systematic 228 

bias is 8.89% for land and -10.83% for ocean (benchmarked by V7), respectively. RTV7_C has better 229 
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CC and lower RMSE over oceanic regions than over land. This is likely due to superior performance 230 

of the PMW algorithms over ocean. 231 

Insert Figure 4 here 232 

2.3  Latitudinal profile of TMPA estimates  233 

Figure 5 depicts the latitudinal distribution of the annual mean precipitation of the four TMPA-234 

RT estimates against V7 over both land and ocean. From this latitudinal profile, one tends to see 235 

relatively larger and more complicated oscillations over land areas than ocean, particularly in the 236 

Northern Hemisphere. This is mainly due to the small-scale variability of continental precipitation 237 

associated with orography. Over land, the profile curves of calibrated TMPA-RT estimates are rather 238 

close to that of V7 in the deep tropics, roughly between 25°N and 18°S (Fig. 5a). The overestimation 239 

of RTV6_C and RTV7_C (corresponding to Figs. 4c and 4d) mostly appears from 25°N to 50°N in 240 

the Northern Hemisphere. Furthermore, RTV7_C has significant overestimation at mid-latitudes 241 

between 25°N and 35°N, even worse than RTV6_C. This is because of the aforementioned retrieval 242 

and calibration issues arising from the updated Version-7 system primarily over the Tibetan Plateau.  243 

At latitudes beyond 35°N, the RTV6_C seemed to excessively elevate the uncalibrated TMPA-244 

RT estimates (e.g., Europe, Middle East, and eastern United States, refer to Figs. 1a and 1b), while a 245 

relatively better performance was found for RTV7_C. Additionally, we note that the most significant 246 

underestimation with RTV6_UC and RTV7_UC occurred from 15°N to 30°N. At this latitude band, 247 

the CCA calibration works best and effectively mitigates the systematic negative biases particularly in 248 

southeastern China, southeast Asia, and India (see Fig. 1). This is mainly because of the dense ground 249 

observing networks distributed over these regions, hence offering robust gauge adjustments using the 250 

GPCC full analysis in the CCA calibration scheme. Relative to land, the latitudinal profile curves over 251 
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the oceans look more stable and smoother (Fig. 5b). Maximum over-ocean rainfall is situated at 7°N, 252 

while the land maximum is at about 3°S. Similar to the patterns in Fig. 5a, the systematic 253 

underestimation with uncalibrated TMPA-RT were also alleviated after the CCA calibration over the 254 

ocean, especially for the latitude band 20°N-S (Fig. 5b). But, in general, the calibrated TMPA-RT 255 

estimates still contain negative biases as compared to V7.  256 

Insert Figure 5 here 257 

2.4  Evaluation of TMPA-RT estimates over the globe 258 

The daily statistics of the four TMPA-RT datasets against the gauge-adjusted V7 product are 259 

summarized in Table 1 for land, ocean, and global domains in the latitude band 50° N-S for different 260 

seasons. First, all statistical indices with the Version-6 TMPA-RT are substantially improved in most 261 

cases. However, the boreal winter season is different, during which slightly lower CC and higher 262 

RMSE values were found for all areas. In terms of ME and BIAS, precipitation over land seems to be 263 

elevated a little more for both the autumn and winter seasons. For Version-6, most of the changes in 264 

the four representative statistical indices point to the success in the CCA calibration scheme. As for 265 

Version-7, the RTV7_C estimates apparently outperformed RTV7_UC according to almost all 266 

statistics, except for a little larger ME and BIAS values over land in summer. This arises because of 267 

the retrieval issues and lack of effective CCA calibration due to sparse rain gauges over the 268 

Himalayan region. Overall, the near-unanimous improvement after the CCA calibration over both land 269 

and ocean further confirms our spatial analysis results as presented in the prior sections. The 270 

systematic errors and biases in the original uncalibrated TMPA-RT were generally alleviated after the 271 

CCA was applied. 272 

Insert Table 1 here 273 
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2.5  Gauge-based validation of TMPA-RT estimates over four representative 274 

regions  275 

 Up to now, the TMPA-RT estimates were evaluated over the globe using the V7 post-real-time 276 

research product as reference. The primary advantage was the availability of matched data at each grid 277 

point over land and ocean. However, despite the research product being heavily influenced by the 278 

GPCC gauges, it uses the same remote-sensing data in its estimation scheme as the TMPA-RT. 279 

Further, the CCA bias adjustment to the RT products is based on the monthly GPCC gauge 280 

accumulations. So, the evaluation was not performed with independent datasets. In this section, we 281 

adopted the CPC unified gauge-based analysis (Chen et al., 2008; Xie et al., 2010) as the reference to 282 

further evaluate the global precipitation products over land. The CPC precipitation data set (at a daily, 283 

0.5°×0.5° latitude-longitude resolution) is computed by interpolating gauge observations from over 284 

30,000 stations through the optimal interpolation (OI) algorithm of Xie et al. (2007). The degree to 285 

which the CPC data set is different from what Huffman et al. (2010) used for the gauge analysis in 286 

TMPA-P estimates and CCA calibration is not known. However, the CPC-based analysis was 287 

performed at daily scale which provides independent information about the random errors with the 288 

TMPA-RT products. Our quantitative validation was performed over the United States, East Asia, 289 

Europe, and Australia (see Fig. 6). The four regions were chosen because of their relatively dense 290 

gauge networks that can offer reliable ground verification for the TMPA-RT estimates. Furthermore, 291 

these regions cover a wide range of climate regimes and land surface characteristics (Ebert et al., 292 

2007).  293 

Insert Figure 6 here 294 

In this study, the four TMPA-RT datasets were resampled to 0.5°×0.5° resolution 295 
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corresponding to the spatial scale of the CPC gauge analysis. In order to reduce the uncertainty in the 296 

validation results, we only selected grid boxes that contained at least one gauge to compute the daily 297 

statistics between the TMPA-RT estimates and the CPC gauge analysis. 298 

Table 2 summarizes the seasonal statistics before and after the CCA calibration for the four 299 

densely gauged regions. With respect to the indices of CC, ME, and BIAS, the CCA exhibits an 300 

effective improvement over its respective, uncalibrated versions for all the validation regions. Taking 301 

Version-7 as an example, the CCA increased the correlation between TMPA-RT and the CPC gauge 302 

observations (except in Australia during winter) and significantly reduced the ME and BIAS values. 303 

These results are consistent with our global evaluation results in 2.4. But, we note that the daily 304 

RMSE became worse after the calibration in most cases, such as in East Asia and Australia, which are 305 

contrary to the results in Table 1. This implies that the CCA made the real-time estimates statistically 306 

closer to the research product, but not to the CPC gauge observations. This is likely due to the sparser 307 

gauge data used in CCA in these regions and the scale differences over which the CCA was applied 308 

relative to the daily accumulations. Since the monthly climatological calibrators in the CCA seemed to 309 

amplify the dynamic range of daily precipitation, the daily RMSE still increased despite the decreased 310 

systematic bias. The basin-scale assessment of Yong et al. (2013) shows the CCA tends to improve on 311 

the error and bias by primarily altering the precipitation estimates at higher rain rates. The primary 312 

concern from these results is that the employment of the historical gauge data and the smooth-fill 313 

scheme in the CCA monthly bias correction could homogenize the highly variable local rainstorm 314 

characteristics. This characteristic might be unfavorable to heavy rainfall-related flood forecasting and 315 

landslide warning. Therefore, it is important to continue providing the uncalibrated real-time 316 

precipitation as an additional field in the forthcoming IMERG products for GPM users, as is being 317 

done in current TRMM Version-7.  318 
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Insert Table 2 here 319 

3 Summary and Outlook 320 

A systematic evaluation of the recent four TMPA real-time data sets against the V7 research 321 

product from July 2008 to June 2011 shows that the latest Version-7 TMPA-RT with climatological 322 

calibration has lower systematic biases and smaller random errors over both land and ocean relative to 323 

the other three versions of TMPA-RT estimates. From a global perspective, the Version-7 TMPA 324 

calibration concepts could be considered as essentially ready for new measurements coming in the 325 

GPM era. However, both analyses indicate the current TRMM-era retrievals still have room for 326 

improvement. The CPC gauge-based analysis over four continental sub-regions showed higher RMSE 327 

values following application of the climatological calibration. While removing systematic bias at the 328 

monthly scales, the calibration scheme may have introduced deleterious effects on daily rainfall 329 

accumulations. This characteristic may have negative impacts for estimating heavy rainfall with high 330 

local variability at small scales. Another problem area was detected in high mountainous regions (e.g. 331 

the Himalayas) and high latitudes. The retrieval algorithms suffer from the effect of persistent snow 332 

cover, and are generally less accurate in estimating falling snow. This highlights a word of caution 333 

when using the Version-7 TMPA-RT estimates for monitoring precipitation over these specific zones 334 

and for highly variable extreme rainfall amounts. Although the newly introduced sensors and 335 

upgraded calibration algorithms have undoubtedly improved the TMPA’s accuracy, some challenging 336 

issues in satellite retrieval processes will continue to remain open for the satellite QPE-hydrology 337 

community, providing impetus for more research and development.  338 

The GPM is a unique and complex program. The successful integration of the GPM Core 339 

Observatory instruments will substantially change the sensor composition and inter-calibration 340 

scheme available for multi-satellite estimation. Relative to TRMM, GPM is designed to make more 341 
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accurate and frequent observations of global rainfall, especially over middle and high latitudes (Hou et 342 

al., 2014). Now, the GPM project is adopting the new Goddard Profiling Algorithm (a multi-channel 343 

physical approach which has been named GPROF2014) to unify all of the available microwave 344 

observations over the latitude band 68° N-S so as to provide, for the first time, adequate sampling and 345 

accuracy of precipitation (both rain and snow) as calibrators beyond TRMM’s 37° N-S band. During 346 

the satellite check-out, most activities are focused on the GPM-era algorithm development and 347 

validation with respect to the recent updates. One of the immediate tasks at hand is to complete the 348 

current testing and validation of the dual-frequency radar algorithm to derive characteristics of the rain 349 

drop spectra. Other important tasks for obtaining global precipitation estimates include extending 350 

quantitative precipitation estimation to higher latitudes, and higher elevations and further improving 351 

the retrievals during winter months. With respect to the current monitoring skills, it is almost certain 352 

that regions characterized by complex terrain and snowy/ice cover will still be problematic for the 353 

day-1 multi-satellite retrieval in GPM.  354 

In summary, we expected that the global analysis of TRMM-based precipitation estimates 355 

reported here can give the satellite precipitation users a better understanding of the error features 356 

associated with currently available TMPA real-time precipitation estimates from a broader perspective. 357 

These results will better guide those users who are taking advantage of these satellite-based 358 

quantitative precipitation data to accommodate their various research and operational applications.  359 
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Figure Captions List 509 

Figure 1. Global map of mean daily precipitation difference between (a) uncalibrated RTV6 data sets 510 

(RTV6_UC) and production V7, (b) calibrated RTV6 (RTV6_C) and production V7, (c) uncalibrated 511 

RTV7 (RTV7_C) and production V7, (d) calibrated RTV7 (RTV7_C) and production V7 for the 512 

three-year study period (from July 2008 to June 2011). 513 

Figure 2. As in Fig. 1, but for seasonal variations: boreal (a-d) Spring (March-May), (e-h) Summer 514 

(June-August), (i-l) Autumn (September-November), and (m-p) Winter (December-February). 515 

Figure 3. Global distribution of scan frequency of various microwave sensors introduced into the (left 516 

column) Version-6 and (right column) Version-7 TMPA real-time system: (a) and (b) No Observation; 517 

(c) and (d) Imagers; (e) and (f) Sounders; (g) and (h) IR. 518 

Note: In the text, the scan frequency of a certain kind of sensors ( iSF ) is defined as following: 519 

    
100%i

i

total

SC
SF

SC
                                     (1) 520 

where iSC
 
is the scan counts of a certain kind of sensors,

 totalSC
 
is the total scan counts for all sensors.  521 

Figure 4. Two-dimensional scatterplots of daily precipitation for (top) uncalibrated and (bottom) 522 

calibrated TMPA-RT against production V7 for (left two columns) land and (right two columns) 523 

ocean, corresponding to the maps in Fig. 1.  524 

Note: The formulae and meaning of all statistical indices in each plot are described in more detail in 525 

Table 1 of Yong et al. (2010). 526 

Figure 5. Latitudinal distribution of the annual mean precipitation of four TMPA-RT estimates 527 

(RTV6_UC, RTV6_C, RTV7_UC, RTV7_C) and production V7 over both (a) land and (b) ocean. 528 

Figure 6. Number of gauge stations in a 0.5° × 0.5° latitude-longitude grid for the CPC unified gauge-529 

based analysis over the global land areas (from July 2008 to June 2011). The four selected validation 530 
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regions (i.e., United States, East Asia, Europe, and Australia) are also shown.   531 
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Table 1. Seasonal statistics of comparing daily accumulations of uncalibrated and calibrated TMPA-RT estimates (i.e., RTV6_UC, 532 

RTV7_UC, RTV6_C, and RTV7_C), taking daily V7 as the reference. Results are displayed for land, ocean, and global domains in 533 

the latitude band 50°N–50°S during the study period July 2008-June 2011. Shading indicates better statistics in each UC/C pair. 534 

Season Item 

CC  ME(mm/day)  RMSE(mm/day)  BIAS (%) 

RTV6_UC RTV6_C RTV7_UC RTV7_C  RTV6_UC RTV6_C RTV7_UC RTV7_C  RTV6_UC RTV6_C RTV7_UC RTV7_C  RTV6_UC RTV6_C RTV7_UC RTV7_C 

MAM 

land 0.78  0.78  0.86  0.90   0.22  0.17  -0.31  0.14   5.54  5.42  4.06  3.69   9.36 7.33 -13.18 5.97 

ocean 0.86 0.87  0.94  0.95   -0.08  -0.07  -0.39  -0.24  4.71  4.66  3.30  3.04   -3.25 -2.69 -15.07 -9.29 

global 0.85  0.85  0.92  0.93   -0.004 -0.007  -0.37  -0.14   4.87  4.79  3.47  3.18   -0.18 -0.28 -15.60 -5.97 

JJA 

land 0.66  0.77  0.84  0.89  -0.57  0.16  -0.29  0.37   6.76  5.95  4.57  4.27   -21.67 6.30 -11.37 14.70 

ocean 0.78  0.87  0.94  0.95   -0.86  -0.28  -0.49  -0.32   6.29  4.78  3.46  3.20   -31.49 -10.27 -17.95 -11.98 

global 0.76  0.85  0.92  0.93  -0.78 -0.17  -0.43  -0.14   6.30  5.04  3.74  3.48   -30.71 -6.57 -17.31 -5.75 

SON 

land 0.72  0.78  0.85  0.89   -0.02  0.16  -0.20  0.11   5.95  5.33  4.19  3.63   -1.04 6.92 -8.85 4.99 

ocean 0.83  0.88  0.95  0.95   -0.47  -0.21  -0.46  -0.25   5.47  4.64  3.42  3.08   -17.48 -7.80 -17.06 -9.18 

global 0.81  0.86 0.92  0.94   -0.36  -0.12  -0.39  -0.15   5.51  4.76  3.60  3.20   -14.68 -4.81 -16.10 -6.34 

DJF 

land 0.78  0.77  0.86  0.89   -0.05  0.30  -0.52  0.13   5.47  5.92  4.27  3.92   -2.05 12.22 -21.40 5.45 

ocean 0.88 0.87  0.94  0.95  -0.19  -0.16  -0.40  -0.31   4.79  4.87  3.49  3.29   -7.03 -5.88 -14.87 -11.29 

global 0.86  0.85  0.92  0.93   -0.15  -0.04  -0.43  -0.19   4.91  5.10  3.67  3.43   -6.18 -1.69 -17.39 -7.69 

All 

Seasons 

land 0.74  0.79 0.86  0.90   -0.11  0.19  -0.33  0.19   5.76  5.49  4.16  3.79   -5.01 9.13 -15.30 8.86 

ocean 0.84  0.87  0.94  0.95   -0.40  -0.18  -0.43  -0.28   5.25  4.70  3.40  3.14   -15.60 -6.88 -16.96 -10.81 

global 0.81  0.85  0.92  0.93   -0.25  -0.12  -0.42  -0.18   5.28  4.92 3.61  3.30   -13.48 -3.42 -16.92 -6.62 
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Table 2. Seasonal statistics of comparing daily accumulations of uncalibrated and calibrated TMPA-RT estimates (i.e., RTV6_UC, 535 

RTV7_UC, RTV6_C, and RTV7_C), taking daily CPC estimates as the reference. Results are displayed for four densely gauged 536 

regions (i.e., United States, East Asia, Europe, and Australia) during the study period July 2008-June 2011. Shading indicates better 537 

statistics in each UC/C pair. 538 
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539 

Season     Item 

CC 
 

ME(mm/day) 
 

RMSE(mm/day) 
 

BIAS (%) 

RTV6_UC RTV6_C RTV7_UC RTV7_C 

 

RTV6_UC RTV6_C RTV7_UC RTV7_C 

 

RTV6_UC RTV6_C RTV7_UC RTV7_C 

 

RTV6_UC RTV6_C RTV7_UC RTV7_C 

MAM 

US 0.34  0.34  0.35  0.37   -0.01  -0.48  -0.35  -0.31   8.30  7.53  7.44  7.09   -0.60 -20.07 -14.54 -12.94 

East Asia 0.45  0.46  0.47  0.51  -0.91  -0.37  -1.33  -0.57   7.05  8.25  6.78  7.30   -30.81 -12.70 -45.09 -19.47 

Europe 0.36  0.39  0.35 0.38   -0.21 0.59  -0.38  0.19   4.63  5.65  4.46  5.01   -11.53 33.41 -21.63 10.46 

Australia 0.58  0.57  0.60  0.62   -1.11  -0.43  -1.41  -0.50   7.07  7.84 6.87  7.20   -40.68 -15.78 -51.66 -18.24 

 

JJA 

US 0.32  0.39  0.38  0.42   0.25  0.21  0.68  0.45   10.24  8.54  9.50  8.25   8.57 7.12 22.79 15.24 

East Asia 0.47  0.51  0.54  0.56   -1.95  0.17  -1.56  0.31   11.56  13.62  10.62  12.16   -35.43 3.16 -28.29 5.70 

Europe 0.42  0.51  0.49 0.51   -0.28  0.57  0.16  -0.11   6.14  6.16  6.23  5.35   -11.00 22.84 6.46 -4.58 

Australia 0.46  0.51  0.55  0.53   -1.32  -0.58  -1.29  -0.68   4.64 5.08 4.39  4.68   -72.68 -31.75 -70.90 -37.36 

 

SON 

US 0.34  0.39 0.39  0.41   -0.67  -0.33  -0.69 -0.09   7.26  7.69  6.82  7.76   -27.73 -13.54 -28.40 -3.82 

East Asia 0.40  0.45  0.48  0.51   -1.04  -0.12  -1.08  -0.21   7.76 9.22  7.17 8.12  -39.07 -4.67 -40.86 -7.75 

Europe 0.50  0.54 0.52  0.56   -0.87  0.56  -0.91  0.03   4.90  6.38  4.84  5.55   -36.34 23.39 -37.85 1.02 

Australia 0.57  0.58 0.59 0.61   -0.68  -0.44  -0.92  -0.57   5.77  6.02  5.51 5.55   -28.85 -18.50 -38.71 -24.05 

DJF 

US 0.30  0.30  0.31  0.31   -0.66  0.01 -0.87  -0.03   5.42  7.59  5.11 6.88   -35.50 0.50 -46.54 -1.66 

East Asia 0.24  0.27  0.28 0.33   -0.70  -0.13  -0.87  -0.41   4.31  5.90  4.08  4.85   -50.13 -9.14 -61.63 -29.24 

Europe 0.33 0.34  0.32  0.34   -1.13  0.39  -1.36  -0.69   4.62  6.95  4.55  5.19   -51.75 17.98 -62.01 -31.59 

Australia 0.63  0.64  0.62  0.65   -0.67  -0.40  -1.35  -0.29   10.67  10.92  10.36  10.60   -13.09 -7.76 -25.49 -5.65 

All 

Seasons 

US 0.32  0.36  0.36  0.39   -0.27  -0.15  -0.30  0.01   7.85  8.00 7.39 7.51   -11.26 -6.07 -12.57 0.27 

East Asia 0.45  0.49  0.52 0.54   -1.15  -0.11  -1.21  -0.22   8.10  9.66  7.53 8.52   -36.79 -3.53 -38.63 -6.96 

Europe 0.41  0.46  0.43  0.47  -0.62  0.53  -0.62  -0.15   5.11  6.31  5.07  5.28   -28.07 24.00 -28.09 -6.76 

Australia 0.61 0.61  0.61  0.64   -0.95  -0.46  -1.24  -0.51   7.40 7.80  7.15  7.37   -31.42 -15.31 -41.28 -16.89 
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Figure 1. Global map of mean daily precipitation difference between (a) uncalibrated RTV6 data sets 541 

(RTV6_UC) and production V7, (b) calibrated RTV6 (RTV6_C) and production V7, (c) uncalibrated 542 

RTV7 (RTV7_C) and production V7, (d) calibrated RTV7 (RTV7_C) and production V7 for the 543 

three-year study period (from July 2008 to June 2011). 544 
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 34 

 Figure 2. As in Fig. 1, but for seasonal variations: boreal (a-d) Spring (March-May), (e-h) Summer 546 

(June-August), (i-l) Autumn (September-November), and (m-p) Winter (December-February).  547 
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 548 

Figure 3. Global distribution of scan frequency of various microwave sensors introduced into the (left 549 

column) Version-6 and (right column) Version-7 TMPA real-time system: (a) and (b) No Observation; 550 

(c) and (d) Imagers; (e) and (f) Sounders; (g) and (h) IR. 551 

Note: In the text, the scan frequency of a certain kind of sensors ( iSF ) is defined as following: 552 

    
100%i

i

total

SC
SF

SC
                                     (1) 553 

where iSC
 
is the scan counts of a certain kind of sensors,

 totalSC
 
is the total scan counts for all sensors.  554 
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 555 

Figure 4. Two-dimensional scatterplots of daily precipitation for (top) uncalibrated and (bottom) calibrated TMPA-RT against 556 

production V7 for (left two columns) land and (right two columns) ocean, corresponding to the maps in Fig. 1.  557 

Note: The formulae and meaning of all statistical indices in each plot are described in more detail in Table 1 of Yong et al. (2010). 558 
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559 
 Figure 5. Latitudinal distribution of the annual mean precipitation of four TMPA-RT estimates 560 

(RTV6_UC, RTV6_C, RTV7_UC, RTV7_C) and production V7 over both (a) land and (b) ocean. 561 
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 562 

Figure 6. Number of gauge stations in a 0.5° × 0.5° latitude-longitude grid for the CPC unified gauge-563 

based analysis over the global land areas (from July 2008 to June 2011). The four selected validation 564 

regions (i.e., United States, East Asia, Europe, and Australia) are also shown.   565 




